Comment on 'Time-like flows of energy momentum and particle trajectories for the Klein-Gordon equation'

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2002 J. Phys. A: Math. Gen. 357961
(http://iopscience.iop.org/0305-4470/35/37/401)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.109
The article was downloaded on 02/06/2010 at 10:31

Please note that terms and conditions apply.

COMMENT

Comment on 'Time-like flows of energy momentum and particle trajectories for the Klein-Gordon equation'

Roderich Tumulka
Mathematisches Institut der Universität München, Theresienstrasse 39, D-80333 München, Germany
E-mail: tumulka@mathematik.uni-muenchen.de

Received 6 March 2002, in final form 27 May 2002
Published 4 September 2002
Online at stacks.iop.org/JPhysA/35/7961

Abstract

Horton et al (2000 J. Phys. A: Math. Gen. 33 7337) have proposed Bohmtype particle trajectories accompanying a Klein-Gordon wavefunction ψ on Minkowski space. From two vector fields on space-time, W^{+}and W^{-}, defined in terms of ψ, they intend to construct a time-like vector field W, the integral curves of which are the possible trajectories, by the following rule: at every space-time point, take either $W=W^{+}$or $W=W^{-}$depending on which is time-like. This procedure, however, is ill-defined as soon as both are time-like, or both space-like. Indeed, they cannot both be time-like, but they can well both be space-like, contrary to the central claim of Horton et al. We point out the gap in their proof, we provide a counter example, and we argue that, even for a rather arbitrary wavefunction, the points where both W^{+}and W^{-}are space-like can form a set of positive measure.

PACS numbers: 03.65.Pm, 03.65.Ta

Let $\psi=\mathrm{e}^{P+i S}$ (where P and S are real) solve the Klein-Gordon equation, $-\square \psi=m^{2} \psi$. Set $P_{\mu}=\partial_{\mu} P, S_{\mu}=\partial_{\mu} S$, and

$$
\theta=\sinh ^{-1} \frac{P^{\mu} P_{\mu}-S^{\mu} S_{\mu}}{2 P^{\mu} S_{\mu}}
$$

The case that P_{μ} and S_{μ} are orthogonal is an exceptional one that we neglect, just as Horton et al [1]. For W_{μ}, one is supposed to take either $W_{\mu}^{+}=\mathrm{e}^{\theta} P_{\mu}+S_{\mu}$ or $W_{\mu}^{-}=-\mathrm{e}^{-\theta} P_{\mu}+S_{\mu}$, depending on which is time-like; they cannot both be time-like since they are orthogonal. The question is, could they both be space-like?

Horton et al [1] declare that W_{μ}^{+}and W_{μ}^{-}cannot both be space-like and argue that otherwise there exists a Lorentz frame such that $W_{0}^{+}=0$ and $W_{0}^{-}=0$, thus $\mathrm{e}^{\theta} P_{0}=-\mathrm{e}^{-\theta} P_{0}$. From this, they conclude $\mathrm{e}^{\theta}=-\mathrm{e}^{-\theta}$, which is impossible.

It is correct that any two orthogonal space-like vectors span a space-like two-plane (corresponding to $x^{0}=0$ in the appropriate Lorentz frame), but no contradiction arises since in this case P_{0} would be zero (in this frame). This is the mistake in the proof.

Together with $W_{0}^{+}=0\left(\right.$ or $\left.W_{0}^{-}=0\right), P_{0}=0$ implies $S_{0}=0$. Hence, for W_{μ}^{+}and W_{μ}^{-}to be space-like it is necessary and sufficient that P_{μ} and S_{μ} span a space-like two-plane.

Can this case occur? Clearly, since the Klein-Gordon equation is of second order, one may choose ψ and $\partial_{0} \psi$ ad libitum on the $x^{0}=0$ hyperplane. Can it also occur for the first-order Klein-Gordon equation $-\mathrm{i} \partial_{0} \psi=\sqrt{m^{2}-\Delta} \psi$, or, equivalently, for functions from the positive-energy subspace? Here is an example. Let ψ be a superposition of three ${ }^{1}$ plane waves

$$
\psi(x)=\sum_{i=1}^{3} c_{i} \mathrm{e}^{\mathrm{i} k_{\mu}^{(i)} x^{\mu}}
$$

with wave vectors $k_{\mu}^{(1)}=(m, 0,0,0), k_{\mu}^{(2)}=(\sqrt{27} m, \sqrt{26} m, 0,0), k_{\mu}^{(3)}=(\sqrt{27} m, 0$, $\sqrt{26} m, 0$), and $c_{1}=3, c_{2}=-1 / \sqrt{3}-\mathrm{i}, c_{3}=\mathrm{i}$. Then, at the coordinate origin, we find $P_{\mu}=(0, \alpha,-\alpha, 0)$ and $S_{\mu}=(0,-\beta, 0,0)$ with $\alpha=\sqrt{26} m / \gamma, \beta=\alpha / \sqrt{3}$ and $\gamma=3-1 / \sqrt{3}$. This example could also be made square-integrable by replacing the plane waves $\exp \left(\mathrm{i} k_{\mu}^{(i)} x^{\mu}\right)$ by positive-energy L^{2} Klein-Gordon functions $\varphi^{(i)}(x)$ with the properties $\varphi^{(i)}(0)=1$ and $\partial_{\mu} \varphi^{(i)}(0)=\mathrm{i} k_{\mu}^{(i)}$.

One may suspect, however, that perhaps this particular wavefunction ψ is very exceptional, and perhaps even that, for this special wavefunction, the coordinate origin is a rather atypical point, so that the sort of situation just described can be ignored. After all, we would be willing to ignore the case where P_{μ} and S_{μ} are orthogonal because in the eight-dimensional space of all possible pairs of vectors P_{μ}, S_{μ} it corresponds to a subset of dimension seven, and therefore one would expect that the space-time points where this occurs form a set of measure zero.

But since $W_{\mu}^{+} W^{+\mu}$ and $W_{\mu}^{-} W^{-\mu}$ are continuous functions of P_{μ} and S_{μ}, the set of pairs P_{μ}, S_{μ} where both W^{+}and W^{-}are space-like is open (and nonempty) and thus has positive measure in eight dimensions. I know of nothing precluding any pairs P_{μ}, S_{μ} arising from a Klein-Gordon wavefunction, so it seems reasonable to expect that the space-time points with space-like W^{+}and W^{-}form a set of positive measure for many wavefunctions, perhaps for most.

Acknowledgment

I wish to thank Sheldon Goldstein for improvements and simplifications of the arguments.

References

[1] Horton G, Dewdney C and Nesteruk A 2000 Time-like flows of energy momentum and particle trajectories for the Klein-Gordon equation J. Phys. A: Math. Gen. 337337 (Preprint quant-ph/0103114)

[^0]
[^0]: ${ }^{1}$ Two will not suffice for an example since P_{μ} and S_{μ} are linear combinations of the k_{μ} vectors.

